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Transport Phenomenon Simulation
 for Linear Polymers through Nanometer Pores
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In this paper the linear polymers transport through a nanopore is simulated. The major effects of superimposed
electric field and the monomers number on the polymer translocation have been proved. The polymer
escape time is inversely proportional with the electric field’s intensity and directly proportional with the
polymer’s length.
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The polymer transport process through a membrane
with nanometer pores has been intensively studied [1, 2,
3]. Naturally, the sources which trigger the translocation
activity can be a chemical potential difference, the selective
adsorption on one side of the membrane, or an external
electric field [4].

Brownian dynamics simulation is the most used
molecular simulation method for the biopolymers transport
processes simulation. The displacement mechanism of
particles which follow Brownian motion is described by
Langevin equation [5].

The general dynamics of each monomer results from
the random bombardment of solvent molecules [3, 5].  In
this conception the monomer motion is a Brownian
motion, evidently.  According to the announced scenario,
any polymer molecule contains N  monomers, each of size
a, being virtually forced to move from a CIS zone to a TRANS
zone through a pore of nanometer dimensions.

Theoretical part
a)The time integration method of Langevin equation
 For easily understandable reasons, but especially due

to the fact that it is computationally less demanding than
ordinary Newtonian Molecular Dynamics (MD), the
Langevin equation is the most used model in the
macromolecular simulation problems. A classical
representation of Langevin differential equation [6, 7] is
the following expression

  (1)

where x is the displacement vector, v is the velocity vector,
t is the time, M is a diagonal matrix of masses, F(x) is the
collective force vector, D is a constant diagonal diffusion
tensor, kB is the Boltzmann constant, T is absolute
temperature and W(t), t>0,  is a collection of independent
standard Wiener processes.
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A Wiener process W (t), t>0, is a one-parameter family
of Gaussian random variables with expectations zero and
covariances E (W(s)W(t))= min{s, t}.  Because the W (t)
are all Gaussian, this information suffices to determine joint
probabilities. Alternatively, W (t) may be viewed as a
“random” continuous function with W (0) = 0.

In the special situation when the friction tensor kBTD-1

=γM for some scalar γ ≥ 0, the Langevin equation (1)
becomes

     (2)

For the case of a diagonal diffusion tensor, the Langevin
equation can be solved with the help of several known
procedures, such as the van Gunsteren - Berendsen
(vGB82) [8], the Brooks–Brunger–Karplus (BBK) [9]
algorithms, and the “Langevin impulse” (LI) integrator [10].

Nevertheless we will not use the classical approaches
presented before. From several reasons [11], the time
integration by Ermak and Buckholtz [12] method of the
equation in discussion, seemed to be more appropriate to
our conception [3].

 The differential equations (2) are required to be
approximated by the difference equations [13] which
compute the velocity and location of the particles,
becoming equations (3) and (4). The recurrence relations
of the particle’s velocity and of the particle’s location are

where ts is the time step and the terms B1 , B2 satisfy the
equations

(3)

(4)
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b) Modeling Philosophies of the Transport Phenomenon
A linear polymer molecule of l length, consisting of N

monomers, each of size a, (l=Na) is prepared to move,
from a CIS zone to a TRANS zone, through a nanometer
pore whose “thickness” is double of the monomer’s
diameter.

The ideal pore is a part of an infinite two dimensional
membrane! We consider no interactions between the
polymer and the membrane, but on the other hand the
polymer interaction with the pore is strong.  Here we
assume that as soon as the polymer enters into the pore, it
is unlikely to come back, because the theoretical
probability to return is very small. This assumption is
justified since under experimental conditions the energy
gained by a single monomer by moving through the
nanopore is much larger than the thermal energy [4].

In our simulation model, the first monomer lies exactly
at the pore’s entrance. Due to the existence of an external
electric field, the first monomer is pulled through the
nanopore from CIS to TRANS zone. In the absence of the
external field, the polymer translocation is extremely slow,
practically impossible. Therefore, it is of great importance
to theoretically investigate the polymer transport under an
electric force generated by an external electric field, F=qE,
where q is the electric charge of monomer and E is the
electric field intensity.

Results and discussions
The general Brownian motion equation for a particle

under an external electric field can be easily solved by a
discrete method, implementable in a versatile computing
code. The programming language in which the simulation
was performed is Borland C++, 3.1 version [3].

Several logical assumptions should be now made such
that the transport phenomenon to be produced:

i). the first monomer from the chain should be found at
the pore’s entrance;

ii). an external electric field should be applied to “push”
the polymer through the pore from CIS to TRANS zone;

iii). the polymer shouldn’t “tie” itself at the pore’s
entrance.

Not respecting the last condition would result in blocking
the translocation [3, 4, and 11].

When writing the monomers displacement equations,
we have to take into account some distinct realistic
conditions.

1.  The monomer is found near the membrane but not
in the pore’s proximity, (the CIS zone).  In this situation the
monomer is repelled by the wall through the LJ force’s
agency.

2. The monomer is inside the pore. In this situation the
monomer will traverse the pore and both the superior and
inferior walls will be acting (with the LJ repelling force) on
it.

3. The monomer is found near the membrane but not
in pore’s proximity, in the TRANS zone. In this situation the
monomer is repelled by the wall through the LJ force’s
agency.

Regarding the monomer-monomer interactions four
different cases exist!

Case 1. The first monomer is fixed – the second
monomer is found in first quadrant relatively to the first
one.

Case 2. The first monomer is fixed – the second
monomer is found in the second quadrant relatively to the
first monomer.
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Case 3. The first monomer is fixed – the second
monomer is found in the third quadrant relatively to the
first monomer

Case 4. The first monomer is fixed – the second
monomer is found in the fourth quadrant relatively to the
first monomer

   
In all the four cases of monomers interactions there

appear two interaction forces, namely the attraction FENE
force  and the repelling LJ force [3]. The attraction FENE
force derives from FENE (Finite Extension Nonlinear
Elastic) potential and the repulsive LJ force derives from
LJ (Lennard-Jones) potential [3].

The supplementary forces also acting on the monomers
such as the viscous friction force and the external force
due to the electric field action haven’t been forgotten:

Fig. 1 The external force influence on the translocation
time (N = 5 monomers

Fig. 2 The external force influence on the translocation
time (N = 16 monomers)

Fig. 4  The influence of the monomers number on the translocation
time, at low external forces

Fig. 3  The influence of the monomers number on the translocation
time, at high external forces

The stated objective of this simulation is to evaluate the
external force F and the polymer’s monomers number N
influences on the polymer translocation time t. The
principal results of the numerical computation are
presented in the following figures.



MATERIALE PLASTICE ♦  45♦  Nr. 1♦  200860

Conclusions
In this paper, the polymer translocation phenomenon

through a nanopore in the presence of an electric force
generated by an external electric field is numerically
examined. The analysis of polymers transport process
through nanometer pores has confirmed the external
factors deciding influence, generally known. Among these
we can enumerate the pore’s thickness (equal with double
of the monomers diameter), the polymer’s length and the
measure of the external field.

The translocation time is a function which mainly
depends on the polymer’s monomers number, being
directly proportional with the polymer’s length.

The effect of the external electric field E on the
translocation time is major. The force resulting from the
electric field’s action has an important role in the transport
process. Therefore, the translocation time is inversely
proportional with the electric field’s intensity.
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